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ABSTRACT: Dielectric relaxation spectroscopy and computer simulations have been used to elaborate
on the loops/bridges population ratio in ordered poly(styrene-block-cis-isoprene-block-styrene), PS-PI-
PS, triblock copolymer lamellae. The dynamics of the PI blocks are examined dielectrically for a PS-
PI-PS copolymer having symmetrically inverted dipoles along the midblock backbone together with its
diblock PS-PI precursor; the present work is an extension of a previous attempt (Watanabe, H.
Macromolecules 1995, 28, 5006) addressing the loop/bridge ratio on the basis of a difference in the dynamics
of these chains. The experiments indicate that the relaxation of the PS-PI-PS triblock lamella at T <
Tg

PS is significantly affected by preannealing at T > Tg
PS, whereas the relaxation of the PS-PI lamella is

insensitive to this annealing. These results as well as changes in the data for the triblock lamella with
the sample preparation method should be related to structural changes occurring only for the triblock
lamella, i.e., changes in the loop/bridge population distribution as well as formation of mutually knotted
loops/bridges on annealing/sample preparation. In the computer simulations, equal mobilities are assumed
for the PS and PI blocks, and thus, the PS-PI junctions are allowed to move rather freely under the
segregation potential. The equilibrium bridge fraction is estimated and, in agreement with theoretical
predictions, is found in the range of 0.50-0.37 as the molecular weight increases. The computer simulations
suggest that the relaxation intensity of loops is almost twice that of bridges with both, however, having
similar relaxation rates. The dynamics of loops and bridges are found not very different from that of the
diblocks (except for the lowest molecular weight); however, the total intensity for the triblocks at
equilibrium is much larger than that for the respective diblocks, which may be related to the observed
increase of the intensity of the triblock lamella on annealing. However, the dielectric behavior of the
diblock and triblock lamellae observed for T < Tg

PS was not explained from the simulation. These results,
indicating an important influence of the junction mobility on the block dynamics, in turn suggest that
the (unknotted) loops and bridges can be dielectrically distinguished only when the junction motion is
essentially frozen in order to enhance the thermodynamic effect on the block motion due to the density-
preserving requirement.

I. Introduction

Block copolymers exhibit a rich variety of structured
mesophases when the different blocks are incompatible.
The interest of the scientific community1 was mostly
focused on diblock copolymers AnBm, where the chemical
dissimilarity between the A and B species (expressed
via the segment-segment Flory-Huggins interaction
parameter, ø) lead to ordered mesophases possessing
various symmetries depending on the overall volume
fraction of the A block, f, and on the degree of incompat-
ibility, øN, where N is the overall number of segments;
for symmetric systems (f = 0.5 or n = m), a lamellar
morphology has been established for values of øN higher
than ∼O(10).

Triblock copolymers, on the other hand, have received
less attention, although many commercial applications
requiring mechanical strength rely principally upon
ordered BAB triblocks.2 It has been established that the

well-ordered mesophases formed by BmA2nBm triblocks
are, in certain aspects, indistinguishable from those
formed by the respective AnBm diblocks (e.g., their long
period and symmetry are identical3-7), whereas a recent
study showed that the effective interfacial widths are
different in the two cases.8 On the other hand, the
order-disorder transition occurs at higher values of øN
for the BmA2nBm triblocks than that for the AnBm
counterparts (N is the total number of segments); i.e.,
the presence of two A-B junctions per triblock chain
makes the system more compatible.9-11

It is this different chain architecture that results in
a fundamental difference between the ordered meso-
phases of a triblock versus those of a diblock copolymer
formed by cutting the triblocks in half. Whereas both
blocks of the diblock as well as the two end-blocks of a
triblock copolymer are each grafted at an interface by
only one end and can be considered as forming dense
brushes extending into their respective microdomains,
the midblocks of an ordered triblock are tethered at both
ends, and therefore, there are two kinds of possible
conformations that the A blocks can attain: a loop
conformation in which both ends are attached to the
same interface and a conformation in which the two end-
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blocks reside on opposite B microdomains, and thus, the
A midblock forms a bridge connecting different B
domains. This qualitative distinction is of particular
interest because these bridges, which may be thought
of as physical cross-links connecting adjacent B micro-
domains, are believed to alter the mechanical and
physical properties of a triblock melt from those of a
diblock,12,10 whereas the loops-to-bridges ratio, intro-
duced as a parameter in micromechanical models,13 may
affect the macroscopic properties (e.g., the shear modu-
lus).

Recently,theoreticaleffortshavebeenundertaken6,7,14-17

to evaluate the fraction of loops and bridges in ordered
triblock lamellae, whereas earlier theoretical investiga-
tions had concentrated on the structure of BAB tri-
blocks.5,18 Zhulina and Halperin15 used a self-consistent
field theory in the limit of strong segregation and, by
assuming that only a very small fraction of A midblocks
adopt a bridge conformation, calculated analytically the
bridging fraction, φbridges ∝ (øN)-1/9; this was in agree-
ment with a different scaling analysis,14 with the work
of Matsen16 but only in the limit of very high øN ∼
O(106) and with a recent estimate.17 However, for
reasonable degrees of incompatibility, øN, the fraction
of midblock bridges depends only weakly on øN and for
symmetric triblocks assumes values of φbridge = 0.4 in
the work of Matsen and co-workers6,16 and φbridge = 0.63
in the work of Jones et al.7 for øN ∼ 100 (they suggest
that a renormalized fraction q′ = 0.46 should be used
instead of the fraction φbridge ) q = 0.63). Moreover,
Matsen and Schick6 also noted that, within the ap-
proximation employed by the midblock performing a
random walk in a field symmetric about the midplane
of the A lamellae, the fraction of bridges must always
be less than 0.5.

On the experimental front, although various struc-
tural4 and rheological10 findings were tentatively at-
tributed to the different contributions of the bridge and
loop midblock conformations, quantitative determina-
tion of the bridge fraction in ordered triblocks has
eluded the scientists in the field. Recently, Watanabe19

attempted to provide an answer to the bridge fraction
question using dielectric relaxation spectroscopy on a
polystyrene (PS)-cis-polyisoprene (PI)-polystyrene sym-
metric triblock that was specifically synthesized to have
symmetrically inverted dipoles along the backbone of
the middle polyisoprene block. cis-Polyisoprene is one
of the few polymers that possess a component of the
dipole moment along the chain backbone (classified as
type-A chains20). For usual PI chains having these dipole
components aligned in the same direction along the
chain backbone, the polarization is proportional to the
PI end-to-end vector R, and the global chain motion
inducing fluctuations in R is dielectrically detected (the
component of the dipole moment perpendicular to the
PI backbone leads to the dielectric observation of the
local segmental motion at frequencies much faster than
those of the global chain motion). This feature of PI has
been extensively used for the investigation of the block
end-to-end vector relaxation in PS-PI diblock copoly-
mers21-24 from the well-disordered to the ordered state;
the dipole moment component along the PI backbone
(Figure 1a) allows for the dielectric examination of the
fluctuation of the end-to-end vector R of the PI block
(Figure 2a). The situation is different for PS-PI-PS
triblock copolymers having the PI block at the middle.
For this midblock without a dipole inversion, the end-

to-end vector will not fluctuate for either loops or bridges
if the ends are fixed (to the “glassy” PS domains, because
the measurements are usually done below the PS glass
transition), and thus, the global midblock motion is not
dielectrically active.25 However, when a dipole inversion
is introduced along the PI midblock (see Figure 1b), the
total polarization is proportional to the vector ∆R ) R1
+ R2, where R1 and R2 are the midblock end-to-
midpoint vectors (Figure 1b), and therefore, the global
midblock motion can be detected for both loops and
bridges (Figure 2b,c). Watanabe19 used this concept and
compared the low-frequency dielectric data of the tri-
block to those of the respective diblock, both forming
ordered lamellae; by assuming that the relaxation
function at low frequencies is dominated by that of loops
(which is considered slower than that for bridges and
similar to that for the tails in a diblock), the bridge
fraction φbridge = 0.40 was obtained, in the same range
with theoretical estimates; large-amplitude oscillatory
shear reduced this fraction to φbridge = 0.30. More
recently, Watanabe et al.26 utilized an asymmetric
triblock with similarly inverted dipoles along the middle
PI block to demonstrate the importance of loops and
bridges on the elasticity and plasticity of triblock
copolymer solutions in solvents selective for the mid-
block. To analyze the dielectric data and extract φbridge,
qualitative arguments on the entropic barriers deter-
mining the motion were used19,26 to support the as-
sumptions that the motion of bridges possesses an
amplitude smaller than that of loops and that the
relaxation function of the loops is similar to that of the
tails in a diblock. Besides, the contribution of knotted
loops or bridges (Figure 2d-f) to the dielectric loss was
not considered.

Figure 1. Schematic illustration of a PS-PI diblock copoly-
mer and its dimer, a dipole-inverted PS-PI-PS triblock
copolymer. The total along-the-chain dipole moment is pro-
portional to the block end-to-end vector R for the diblock and
to the vector ∆R ) R1 + R2 for the triblock.

Figure 2. Schematic representation of PI block conformations
in diblock and triblock copolymer lamellae. (a) Diblock lamella
(tail). (b-f) Triblock lamella: (b) unknotted loop, (c) unknotted
bridge, and (d-f) knotted loop/bridge. Dielectric relaxation
reflects fluctuation of the free end of the tail or midpoint (dipole
inversion point) of the loop/bridge (shown as the filled circle).
E denotes the electric field parallel to the lamellae normal.
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A question that remained open following Watanabe’s
work is what is a general and quantitative molecular
picture for both loop and bridge relaxation. Besides, how
the estimated values of the bridge fractions are affected
by sample preparation or annealing, i.e., whether one
can measure and discuss a real equilibrium bridge
fraction, is left as an open question.

The present paper is an effort to extend Watanabe’s
work by investigating the effects of the sample prepara-
tion/annealing method on the dielectric relaxation be-
havior of triblock copolymers with symmetrically in-
verted dipoles along the chain backbone of the midblock.
By comparing the observed behavior with that of the
respective diblock, it is found that the emerging picture
is more complicated than originally considered; i.e., the
separation of the loops and bridges contributions to the
observed dielectric relaxation is significantly affected by
the sample history. It is proposed that annealing may
affect not only the loop fraction but also the population
of knotted loops and bridges (Figure 2d-f). At the same
time, Monte Carlo computer simulations using the
Cooperative Motion Algorithm (CMA) were employed to
investigate the statics and dynamics of symmetric
triblocks of different molecular weights. The results
were compared with those for the respective diblocks.
Investigation of the static structure revealed the transi-
tion to the ordered state at øeffN = 20 (close to the
literature values11) where a lamellar microdomain
structure was formed. By identifying all of the indi-
vidual midblock chains as either loops or bridges, the
bridge fraction was evaluated in the range 0.50-0.37
for N ) 20-60 (the estimations are made at øeffN = 100),
in agreement with the data. The investigation of the
midblock dynamics by evaluating the orientational
relaxation of the vector ∆R individually for loops and
bridges revealed that, at (a hypothetical) equilibrium
where both end- and midblocks possess the same
mobilities, the contribution of the intensity of loops is
almost twice that of bridges, with both, however, having
similar relaxation rates. The total intensity is much
larger than that for the respective diblocks, which
agrees with the data for the annealed triblock lamellae
but not for the melt-prepared one. However, the dynam-
ics of ∆R of the triblock is found very similar to that of
R of the diblock, which disagrees with the experiment
for the annealed systems. In the actual experimental
systems, the ends of the midblock PI chains are more-
or-less fixed onto the glassy PS domains, whereas in the
simulated systems, the ends of the midblock chains can
fluctuate rather freely. This fact, probably resulting in
the difference between the data and the simulation, in
turn suggests the importance of the block junction
mobility on block copolymer dynamics. Moreover, an-
nealing may also affect the degree of “interdigitation”
of loops and bridges in the experimental systems.

This article is arranged as follows: following the
Experimental Section (II), the results of the dielectric
relaxation investigations are presented in section III.
The Monte Carlo computer simulations are presented
in section IV and are discussed in relation to the data.
Finally, the concluding remarks constitute section V.

II. Experimental Section

Materials. A poly(styrene-b-1,4-isoprene-b-styrene),
PS-PI-PS, triblock copolymer having symmetrically
inverted dipoles along the chain backbone of the mid-
block PI block, PS-PIB-PIA-PS, was synthesized19 us-

ing a p-xylylene dichloride coupling reaction. First, PS-
PIB-Li+ diblock anions were polymerized using sec-
butyllithium in benzene. The resulting high-cis-PI block
has type-A dipoles20 aligned in the same direction. A
fraction of the PS-PIB diblock copolymer was recovered
as a prepolymer, and the remaining anions were coupled
with a prescribed amount of p-xylylene dichloride (=95%
equimolar to the anions) to produce symmetrical PS-
PIB-PIA-PS triblocks with dipole inversion at the mid-
point of the PI block. Finally, the small amount of the
unreacted prepolymer was thoroughly removed by re-
peated fractionation from benzene/methanol mixtures
to obtain a monodisperse PS-PIB-PIA-PS copolymer
sample.

The PS-PIB and PS-PIB-PIA-PS copolymers were
characterized with gel permeation chromatography
(GPC) with a refractive index monitor and a UV
absorption detector.19 The elution solvent was THF, and
commercially available monodisperse polystyrenes were
used as elution standards. The macromolecular char-
acteristics of both the PS-PI, identified as SI(12-12),
and the PS-PI-PS, identified as SI(12-12)2, samples
are shown in Table 1. Note that the molecular micro-
structure of the SI(12-12) is identical to that of a half-
contour of the SI(12-12)2 copolymer.

Sample Preparation. Because one aim of this work
is to understand the effects of sample preparation and
annealing on the dielectric response, specimens for the
dielectric measurements were prepared in different
ways: For the specimens called prepared “from-the-
melt”, the material freeze-dried from a benzene solution
was placed between the two electrodes under vacuum
and pressure was applied to the electrodes at 100 °C
for 5-6 h, to spread the polymer uniformly on the
electrodes. For the solvent cast and annealed specimens,
the material was dissolved in toluene (a solvent almost
equally good for the two components) and slowly cast
on the electrode under weak vacuum at a temperature
close to the boiling point of the solvent. The samples
were then annealed at 120 °C under vacuum for various
times as shown in Table 2. In all cases, the solvent has
been totally removed in the first stage, as evidenced
from measurements of the local segmental dynamics
(section III below).

The PS/PI lamellae prepared with the above methods
are believed to be essentially parallel to the electrodes:
With the slow solvent casting followed by annealing (the
second method), the lamellar surface is known to
become parallel to the surface of the casting solution,

Table 1. Molecular Characteristics of the Samples

sample MPS MPI wPS
a Mw/Mn Nb fPS

c øN (25 °C)

SI(12-12) 11 700 11 600 0.50 1.04 277 0.47 45d

SI(12-12)2 23 400e 23 200 0.50 1.05 554 0.47 90d

a Weight fraction of polystyrene (PS). b On the basis of average
segmental volume. c Volume fraction of PS. d On the basis of ø )
0.05 + 34/T. e Total molecular weight for the two PS blocks: each
PS block has M ) 11 700.

Table 2. Preparation/Annealing History of the Triblock
Samples

sample preparation annealing (days)

Melt-0 from-the-melt 0
Cast-A slow casting 4
Cast-B1a slow casting 6
Cast-B2a slow casting 8
Cast-C slow casting 10

a They refer to the same specimen.
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i.e., to the substrate used as the electrode. With the first
method, the applied pressure squeezed the freeze-dried
material down to 50 µm thickness, and this squeezing
flow possibly resulted in the lamellae parallel to the
electrode (as suggested also from coincidence of the
dielectric data explained later for Figure 4a).

Dielectric Measurements. Dielectric relaxation
spectroscopy was used to investigate the collective chain
dynamics of the PI blocks of the diblock and the triblock
copolymers in the ordered state. Advantage is taken of
the finite component of the dipole moment parallel to
the PI chain backbone.20 For macroscopic systems,
dielectric relaxation reflects fluctuations of the total
polarization in the direction of the applied electric field
E (this direction is chosen as the z-direction throughout
this paper). The corresponding relaxation function is
given by the autocorrelation function of the z-component
of the polarization, Pz(t),27

where, for convenience of the discussion later, the
relaxation function is not normalized. The complex
dielectric permittivity, ε*(ω) ) ε′(ω) - iε′′(ω) (i ) (-1)1/2),
the quantity measured in this study, is given by the one-
sided Fourier transform of the time derivative of this
C(t),27

where ε∞ is the high-frequency dielectric constant and
K is a numerical constant proportional to F/kBT, with
kB, T, and F being the Boltzmann constant, absolute
temperature, and a correction factor accounting for a
difference of the internal (local) and macroscopic electric
fields, respectively.

The relaxation mode distribution of ∆C(t) ) C(t) -
C(∞) is reflected in the dielectric dispersion, i.e., in the
dependence of ε′′ on the angular frequency ω. If the
mode distribution of ∆C(t) is described by a spectrum
F̃(ln τ)/K, then

and ε′′ is represented as a superposition of Debye
processes,

A proportionality between ε′′ and ω (the terminal
behavior) is observed at frequencies well below 1/τ1, with
τ1 being the longest relaxation time (i.e., F̃(ln τ) f 0 for
τ . τ1). Consequently, if F̃ does not vanish at τ, the
weaker ω dependence is seen at corresponding frequen-
cies, ω = 1/τ; specifically, a power-law behavior, ε′′ ∝
ωa (0 < a < 1), is observed if F̃ exhibits a power-law
decay, F̃ ∝ τ-a. The dielectric relaxation intensity, ∆ε )
ε′(0) - ε′(∞) ) (2/π) ∫-∞

∞
ε′′(ω) d(ln ω), is related to ∆C(0)

as

This ∆ε as well as the relaxation mode distribution of
∆C(t), i.e., the ω dependence of ε′′, are utilized in the
arguments for the dielectric behavior of the di- and
triblock copolymer lamellae. For multiple relaxation

processes, the dielectric strength of each one is evalu-
ated by integrating F̃(ln τ) over the appropriate range
of τ.

The spectrum of relaxation times F̃(ln τ) is evaluated
by a direct transformation of the dielectric ε′′(ω) data
(eq 4) with a recently proposed method,23 which is based
on a modification of the widely used CONTIN routine28

for the analysis of photon correlation spectroscopy29

data; the significant advantage of the routine is that it
provides reliable statistical criteria for the support or
rejection of the nominally proposed solutions. Similar
analyses, on the basis of integral inversion, have been
proposed by others30,31 as well.

A framework of the dielectric spectroscopy relevant
to this work is presented in Appendix A with emphasis
on the relationship of the dielectric loss to the relaxation
function of vector R of the diblock and that of vector
∆R of the triblocks.

The dielectric measurements were performed with a
Solatron-Schlumberger frequency response analyzer
FRA 1260, supplemented by using a high-impedance
preamplifier of variable gain, covering the frequency
range 10-2-106 Hz. The sample was residing between
two gold-plated stainless steel electrodes (diameter 25
mm) with a spacing of 50 ( 1 µm maintained by two
fused silica fibers 50 µm in diameter; attention is paid
to achieve a good contact between the sample and the
electrodes. The sample was kept in a cryostat with its
temperature controlled via a high-pressure nitrogen gas
jet heating system with a Novocontrol Quatro controller,
allowing a stability of the sample temperature in
margins of (0.1 °C in a broad temperature range of
-160 to +300 °C (in the present system, the tempera-
ture range covered was -70 to +300 °C). The absolute
values of the loss part of the dielectric permittivity, ε′′,
depend on the accuracy of the value of the sample
thickness provided to the instrument software.

III. Experimental Results and Discussion

1. From-the-Melt Samples without Annealing.
Overview. Figure 3 shows a semilog plot of the loss part
of the dielectric permittivity, ε′′(ω), versus frequency for
the “melt-prepared” symmetric ordered triblock copoly-
mer SI(12-12)2 in the temperature range corresponding
to the polyisoprene segmental mode (223-241 K) to-
gether with the data for the SI(12-12) diblock. The two

Figure 3. Frequency dependence of the dielectric loss ε′′(ω)
for the SI(12-12)2 ordered triblock copolymer (solid symbols)
and for the SI(12-12) ordered diblock (open symbols) in the
temperature range where the polyisoprene segmental motion
is observed for various temperatures: (2,4) 223, ([,)) 229,
(9,0) 235, and (b,O) 241 K.C(t) ) 〈Pz(t)Pz(0)〉 (1)

ε*(ω) ) ε∞-K∫0

∞dC(t)
dt

e-iωt dt (2)

∆C(t) ) 1
K∫-∞

∞
F̃(ln τ) exp[-t/τ] d(ln τ) (3)

ε′′(ω) ) ∫-∞

∞
F̃(ln τ) ωτ

1 + (ωτ)2
d(ln τ) (4)

∆ε ) K∆C(0) ) ∫-∞

∞
F̃(ln τ) d(ln τ) (5)
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sets of data agree with each other at all temperatures
in this range (the small differences in the low-frequency
range are due to the chain motion contribution discussed
below), verifying that in this dynamic regime there is
no significant additional contribution from a different
relaxation process in the triblock relative to the diblock.
It also verifies that on the scale of the local segmental
motion there is no difference between the ordered tri-
and diblock copolymers (see Figure 5 below). Actually,
this segmental motion is similar to that of a PI ho-
mopolymer of the same molecular weight, in agreement
with previous studies24 in the ordered state.

As the temperature increases, another relaxation
process enters our frequency window. Figure 4 shows
the dielectric loss data of the triblock lamella in
comparison with the data for the diblock at two tem-
peratures where the normal mode relaxation is observed
in our frequency window: (a) 271 and (b) 289 K. The
solid curves through the data points are the fits (eq 4)
to the ε′′(ω) data in order to determine the relaxation
spectra F̃(ln τ), shown in the insets. The open squares
in Figure 4 are the triblock data multiplied by a factor

λ, λε′′triblock, with λ ) 1.76 (at 271 K) and 1.51 (289 K). A
very important characteristic of this process is that,
within the error, it exhibits the same dynamics as that
of the PI block of the diblock over the whole temperature
range where the process is within the window of the
technique (in agreement with the earlier data19 at 313
K). This is shown in Figure 5, which depicts the
temperature dependence of the most probable (not the
longest) relaxation times τpeak obtained from the peak
location of the spectra F̃(ln τ) for both the di- and
triblock samples; these τpeak values are also in agree-
ment with the normal mode process of a PI homopoly-
mer of molecular weight 11760 (shown in Figure 5 with
a solid line based on previous data32,33). The agreement
regarding the segmental PI relaxation between the
diblock and the triblock as well as with the above
homopolymer is also evident.

In Figure 5, the relaxation times are also shown for
a third, slower process (observed at T g 400 K), which
has been observed before for ordered diblocks21,24 (with
amplitude that depends on the sample preparation) and
was apparently related to the coherently ordered mi-
crostructure; it was attributed24 to the relaxation of the
conformal interfaces formed in the ordered state, and
this assignment was in harmony with computer simula-
tion.34 The relaxation times of this process were inde-
pendent of sample preparation, and the simulations
suggested34 that the times depended on the period of
the lamellae; the observed relaxation times are the same
for the tri- and diblock samples, possibly due to the
equivalent lamellar spacing.

The dotted and dashed curves in Figure 4b are the
previous data19 of the di- and triblock lamellae reduced
at 289 K. In that study, the di- and triblock lamellae
were prepared directly on the electrode via slow solvent
casting from toluene (for 1 week at ∼303 K) and
successive vacuum-drying for a week at ∼343 K (lower
than the glass-transition temperature of the PS block
of molecular weight 11 700; Tg

PS = 367 K). This prepa-
ration resulted in an alignment of the lamellae almost
parallel to the electrodes, as observed by transmission

Figure 4. Comparison of the dielectric loss data between the
SI(12-12) diblock (O) and the SI(12-12)2 triblock (9) at (a)
271 K and (b) 289 K. The solid lines through the data points
are the fits (eq 4) in order to extract the relaxation spectra
(distribution of relaxation times), F̃(ln τ), in the respective
insets. The open squares (0) indicate the shifted loss data of
the triblock, λε′′triblock, with the shift factor λ being chosen to
achieve the best superposition on the ε′′triblock data of the
diblock at low frequencies, f < 102 Hz at 271 K and f < 103 Hz
at 289 K. The dotted and dashed lines in part b are dielectric
loss data for SI(12-12) (.....) and SI(12-12)2 (- - - - -) at 289 K
from Watanabe19 (see text).

Figure 5. Arrhenius plot of the temperature dependence of
the most probable relaxation times of the fast segmental
process (O, 0), the intermediate chain motion (b, 9), and the
slow interface-related process (x, !) obtained from the peak
location of the corresponding relaxation spectra F̃(ln τ) for the
SI(12-12) ordered diblock (O, 9, x) and the melt-prepared SI-
(12-12)2 ordered triblock copolymer (0, 9, !). Lines denote
the segmental and normal mode relaxation times of homopoly-
mer polyisoprene of molecular weights 11 760 and 23 500 from
earlier works.32,33
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electron microscopy.19 In contrast, the present from-the-
melt lamellar specimens were prepared from the freeze-
dried copolymer materials by essentially compression
molding at ∼373 K (>Tg

PS) for 5-6 h. This molding
(down to the specimen thickness of 50 µm) resulted in
a rather strong squeezing flow, which should induce a
certain alignment of the lamellae parallel to the elec-
trodes. Although the domain orientation in the present
specimens was not experimentally examined and, thus,
is not known, the similarity of the present dielectric data
to those of Watanabe19 (Figure 4b) is a strong indication
of a similar morphology/orientation; i.e., it is believed
that the present treatment of the from-the-melt speci-
mens was capable of orienting the microdomains paral-
lel to the electrodes, and thus, the dielectric behavior
of the from-the-melt specimens can be discussed on the
basis of the dielectric formulations for a lamella sub-
jected to the electric field in the direction of its normal
(Appendix A).

In Figure 4, the terminal relaxation behavior char-
acterized by the proportionality between ε′′ and fre-
quency is observed neither for the diblock nor for the
triblock lamellae. Instead, the data exhibit power-law-
like tails at low frequencies, ε′′ ∝ f a with a = 0.3. The
corresponding power-law behavior, F̃ ∝ τ-a for large τ,
was noted for the relaxation spectrum, although this
behavior is not clearly demonstrated in the semiloga-
rithmic plots shown in the insets. These results indicate
that the global relaxation of the PI blocks in these
lamellae is significantly broadened and retarded as
compared to the relaxation of homo-PI chains.21,35 The
retardation and broadening are essentially attributed
to the thermodynamic requirement of preserving uni-
form density discussed in Appendix A.

Estimation of Unknotted Bridge Fraction. An attempt
is now made to estimate the fraction of unknotted
bridges, φbridge, from the ε′′ data of the di- and triblock
lamellae. The PI blocks in the diblock lamellae have the
tail conformation, whereas those in the triblock lamella
have the loop and bridge conformations (Figure 2). The
previous arguments19,26 suggest that the dielectric
relaxation behavior is similar for the tails and unknot-
ted loops, whereas the relaxation is faster and its
intensity is smaller for the unknotted bridges. If it is
assumed that the knotted loops/bridges do not signifi-
cantly contribute to the ε′′ data of the triblock, this
argument allows one to estimate φbridge from the data
of the di- and triblock lamellae, as explained in Ap-
pendix A.

The good superposition of the ε′′diblock, and the shifted
λε′′triblock data at low frequencies (see open circles and
squares in Figure 4), indicates that the distribution of
slow relaxation modes is similar for the two lamellae
but their intensity is smaller for the triblock. This
coincidence of the slow mode distribution is in harmony
with the above argument,19,26 suggesting no significant
contribution of the knotted chains to ε′′triblock. Then, one
may estimate φbridge on the basis of eq A15,

where λ ()1.76 ( 0.02 at 271 K and 1.51 ( 0.02 at
289 K) is the shift factor that gave the best superposition
of the ε′′triblock and ε′′diblock data. (λ-1 is the unknotted loop

fraction in the above argument.) Alternatively, one may
estimate φbridge utilizing the ratios of the dielectric
intensities ∆εn for the normal mode relaxation, which
were evaluated by integrating the spectrum F̃(ln τ) in
the insets over the appropriate range of τ. Averaging
over the temperatures investigated results in

If the dielectric intensity of the unknotted bridges is
significantly smaller than that of the unknotted loops,
one may utilize this ratio in eq A16 to estimate φbridge.
The results were

The φbridge values estimated with the two different
methods are reasonably close, suggesting that the ∆εn
is actually smaller for the unknotted bridges than for
the unknotted loops. Note, however, that both methods
involve certain assumptions and the estimated values
should be considered with caution. Besides, the differ-
ences in the mode distribution should probably be
attributed to the bridge relaxation, which signifies that
the bridges have a small but nonnegligible contribution
to ∆εn.

The φbridge values of the from-the-melt triblock lamel-
lae (eqs 6 and 8) are reasonably close to the value for
the previously studied solvent-cast lamellae, φbridge )
0.41 (λ ) 1.7)19 and in the same range with theoretical
estimates6,7,14-16 of φbridge = 0.4-0.46 in the limit of
strong segregation; in the present case and in the
temperature range (T e 289K) where the chain motion
is observed, the effective øN is about 90, and the triblock
resides in strong segregation.36 Thus, in these lamellae
prepared with different methods, the distribution of the
PI block conformations does not seem to be significantly
different, and the dielectric method (eqs A15 and A16)
seems to be useful in estimating φbridge of the unknotted
chains.

At this point, one should again note the limitations
of this dielectric method together with its usefulness.
First, the method is based on a molecular argument,
and one should not overestimate the accuracy of the
resulting φbridge values; actually, it was suggested19 that
the φbridge value free from this argument can be dielec-
trically obtained if the ε′′ of a model system composed
of triblocks and ring-diblocks is compared with ε′′ of the
triblock. Second, the molecular argument does not
incorporate the effect of spatial confinement35 on the
dielectric behavior of the PI blocks analyzed in Appendix
B; incorporation of this effect might result in a some-
what larger φbridge value. As judged from Table 6 in
Appendix B, the dielectric intensity may be somewhat
larger for the loops than for the tails and eq 15 should
be modified as ε′′PS-PI-PS(ω) = rφu.loopε′′PS-PI(ω), with r
being a number slightly larger than unity. A much more
severe third limitation of the dielectric evaluation of
φbridge is related to the contribution of knotted chains
(cf. Figure 2). The dynamic behavior of these chains is
not fully incorporated in the argument for eqs A15 and
16. In addition, the behavior of the knotted loops and
knotted bridges would not be significantly different, and
it becomes difficult (and conceptually useless) to dielec-
trically distinguish these chains. Because the triblock
lamellae would contain a nonnegligible amount of the
knotted chains at the real equilibrium where the motion
of the PS-PI junctions is not frozen, one may have to

φbridge ) (λ - 1)/λ ) 0.43 ( 0.01 (at 271 K)

0.34 ( 0.02 (at 289 K)
from-the-melt lamellae (6)

∆εn,triblock/∆εn,diblock ) 0.60 ( 0.05 (7)

φbridge ) 0.40 ( 0.05 from-the-melt lamellae (8)
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limit the dielectric estimation of φbridge with the present
methodology (eqs. A15 and A16) only to a partial
equilibrium state where the number of the knotted
chains is considerably smaller than that at the real
equilibrium and the PS-PI junction motion is frozen
to suppress an increase of this amount. The present
from-the-melt lamellae as well as the solvent-cast
lamellae of Watanabe19 seem to be in this partial
equilibrium state.37 For these lamellae, the dielectric
method works to give the estimate of φbridge in the actual
specimens (not in the real equilibrium).

2. Samples Prepared with Solvent Casting and
Annealing. The effect of the sample equilibration on
the dynamics of the midblock chains was investigated
using the series of samples prepared with slow solvent
casting at high temperature (close to the boiling point
of toluene) followed by annealing at 393 K (>Tg

PS) for
various times (Table 2). Slow solvent casting is well-
known to produce a more coherent microdomain struc-
ture3,38,39 and to allow the system more time to attain
thermodynamic equilibrium.40,41 It is expected that this
will influence the possible chain conformations,42 i.e.,
the population distribution of the knotted/unknotted
loops and bridges for the triblock lamellae.

Figure 6 shows the effect of sample preparation and
annealing time on the ε′′(ω) data of the triblock. Figure
6a shows the data for a temperature where the PI
segmental motion is detected, whereas Figure 6b shows
the data for a temperature where the global chain
motion is observed. Also shown are the data (at the
same temperatures) for a from-the-melt triblock sample

and for the diblock. A significant increase is evident on
the low-frequency side of the segmental relaxation in
the data of the “Cast-A” specimen as compared with that
of the from-the-melt one, indicating the existence of a
relaxation process with a very broad mode distribution
(almost 3 decades), which is slower than the segmental
relaxation but essentially faster than the normal mode
of the tail PI blocks of the diblock and the one observed
for the from-the-melt specimen (discussed before). These
differences become even more pronounced with increas-
ing annealing time (data of “Cast-B1”, “-B2”, and “-C”
specimens). Moreover, the data for Cast-B2 and -C are
very similar (except for a difference at very low frequen-
cies in Figure 6b due to the contribution of conductivity),
indicating that the sample prepared by slow casting
reaches equilibrium within 8 days annealing at 393 K
(Cast-B2). This was also verified with subsequent
measurements on specimen Cast-C annealed for an
extra week. The significant enhancement of the dielec-
tric loss intensity in the frequency range between the
segmental motion and the motion of the PI tails of the
diblock, observed in Figure 6 for specimens Cast-B1,
-B2, and -C, indicates a highly correlated motion of the
chains that relax with this particular dynamic process
(called “LB” from now on). Note that the segmental
motion, although partially overlapping with the LB
process, is clearly identified at low temperatures/high
frequencies (Figure 6a).

For sample Cast-A, where the conductivity contribu-
tion appears at higher temperatures, the slow process
related to the correlated motion of the interfaces in the
lamellar-ordered copolymers24 is also observed (not
shown). For the other specimens, the segmental process
and the process LB are observed, whereas the interfacial
process is hidden behind the increased conductivity
contribution, which appears at lower temperatures than
for Cast-A.

In the LB relaxation domain (Figure 6b), the ε′′ of the
annealed triblock lamellae depends very weakly on
frequency without a significant loss peak, and thus, the
relaxation mode distribution is very broad. Such a broad
distribution may be exclusively attributed to an extra
cross-correlation (or coupling43) of the relaxation of
midblocks in the triblock lamellae that has emerged
during annealing. For the diblock lamellae annealed in
a similar manner, neither any appreciable broadening
of the mode distribution nor any enhancement of the
magnitude of ε′′ was observed. Therefore, the broaden-
ing and the intensity enhancement observed for the
annealed triblock can be attributed to conformational
changes exclusively occurring for the midblocks of the
triblock lamellae. This conformational change might be
the formation of knotted (interdigitated) configurations26

on annealing. For the midblocks spatially confined in a
lamella, it was suggested35 that the knot formation
enhances the cross-correlation of chains leading to an
increase of the dielectric intensity; those results are
summarized in Appendix B. A possibility was also noted
that a similar increase of the intensity may occur due
to the knot formation for the chains that are subjected
to the thermodynamic requirement of preserving uni-
form density, which is the essential factor that broadens
and retards the block relaxation as compared to ho-
mopolymer chains.

In the dielectric spectroscopy literature, such signifi-
cant increases in dielectric strength have been at-
tributed to the contribution of the Kirkwood correlation

Figure 6. Effect of the sample preparation method and
annealing on the dielectric loss data at (a) low temperature
(243 K) where the polyisoprene-block segmental relaxation is
observed and (b) higher temperature (273 K) where the
polyisoprene-block normal mode is measured. Different sym-
bols denote the diblock (O) and various triblock samples: (9)
from-the-melt, (*) Cast-A, (∇) Cast-B1, ([) Cast-B2, and (4)
Cast-C.
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factor,44 h, due to extra correlations between a certain
dipole and its neighbors,45 which introduces a factor h
in the calculation of the average of the system polariza-
tion 〈P2〉 ) hP2. The Kirkwood factor h is given by h )
1 + ∑i,j cos φij, where indices i and j are over all chains
and φij is the angle between a reference chain i and a
chain j; if each of the z near-neighboring chains con-
tributes equally to cos φ, then h ) 1 + zcosφ. It has
been reported46 that h can take values even much larger
than 1, and therefore, this can explain the increased
value of the dielectric strength. This mutual enhance-
ment of polarization in the present case may be due to
the formation of knotted configurations in the annealed
triblocks. Moreover, it is obvious that the correlation
factor h is unity (i.e., cosφ ) 0) in the case that the
dipole moment vectors P can individually assume any
random orientation, as in the case of the tails in the
diblock and as was assumed for the motion of the
triblock midblocks for the from-the-melt prepared speci-
mens. It should be noted that application of the Kirk-
wood-Fröhlich44,47 theory indirectly assumes that the
“units of polarization” (here the midblock chains) remain
discrete units, so as to retain the “memory” of orienta-
tion; i.e., they are not in a state where the identity of
each individual chain is lost, for example, in a strongly
entangled regime. This is true in the present case
because the molecular weight of the midblock PI chain
is only about two times larger than the characteristic
molecular weight48 where entanglement effects influ-
ence the chain dynamics.33

Comparing the behavior of the fully annealed triblock
(Cast-C) and the from-the-melt diblock, the latter
containing only the tail-type PI blocks, by calculating
the dielectric strength (using the distribution of relax-
ation times analysis) for temperatures where the LB
process relaxes inside the experimental frequency win-
dow (261-287 K) results in ∆εn,triblock/∆εn,diblock = 2.
Interestingly, this ratio is fairly close to the factor of
10/4 (see Table 6 in Appendix B), expected from a model
calculation35 for the tail and the fully knotted loops/
bridges (modeled as a bundle of tails) both subjected to
spatial confinement but in the absence of the density
preserving requirement. In the presence of this require-
ment, the dielectric intensity of the knotted chains may
be somewhat increased as compared to that in the model
calculation, possibly resulting in the observed difference
between the above two lamellae. Thus, it is conceivable
that the knot formation can result in the observed effect
of annealing: in the presence of both the confinement
and the density-preserving requirement, the knot for-
mation would not only increase the dielectric intensity
but also broaden the mode distribution (due to enhanced
cross-correlations).

Concerning this point, one has to remember that the
from-the-melt specimen was prepared via compression-
molding of a material freeze-dried from a benzene
solution. During this freeze-drying procedure, the tri-
block chain configuration should have been frozen at
some concentration where the microphase separation
occurred but the chains were not fully knotted. This
frozen configuration would be essentially preserved
during the compression-molding (or, the squeezing flow
on molding might have even decreased the knot con-
tent). Thus, annealing at 393 K (>Tg

PS) could increase
the knot content to an equilibrium content at 393 K to
induce the enhancement/broadening of the dielectric
relaxation of the triblock lamellae. In this context, it is

expected that the fully annealed specimens retained this
knot content at 393 K even after they were cooled to
the experimental temperatures (e273K).

The dynamic behavior of the knotted chains is not
fully incorporated in the argument for eqs A15 and A16,
whereas the behavior of the knotted loops and knotted
bridges would not be significantly different so that the
dielectric distinction of these knotted chains is difficult
(and conceptually useless). For these reasons, it is not
(and probably should not be) attempted to estimate the
fractions of the knotted bridges/loops in the annealed
triblock lamellae. Moreover, one has to remember that
the φbridge for the unknotted bridges can be dielectrically
estimated for the from-the-melt triblock lamellae be-
cause of the quenched chain configuration therein. A
similar situation is noted for the specimens of Wa-
tanabe19 prepared via slow solvent cast at 303 K
followed by vacuum-drying/annealing at 343 K, with
these temperatures being substantially lower than
Tg

PS.
Finally, a brief statement is added about the effect of

concentration on the knot formation. Watanabe et al.26

examined the dielectric behavior of PS-PI-PS and PS-
PI copolymers in a PI-selective solvent, n-tetradecane.
The copolymer concentration was 50 wt %, and spherical
domains of the PS blocks were formed in the solutions
at low temperatures (where the PS blocks were not
dissolved in n-tetradecane). Reversible changes of the
dielectric data were found for both di- and triblock
solutions in a range of temperature including that of
the order-disorder transition. For those data represent-
ing the equilibrium behavior of the blocks, no enhance-
ment/broadening of the triblock relaxation was observed
on annealing. This difference between the solution and
the bulk specimen (Cast-C in Figure 6b) may be partly
related to a smaller knot content in the solution at
equilibrium: swollen midblocks tethered on spherical
PS domains would tend to take unknotted conforma-
tions. Thus, the φbridge value estimated from the ε′′ data
of the tri- and diblock solutions26 may be the fraction
for the unknotted bridges, although the previous study26

did not rule out a possibility that φbridge estimated from
the data at intermediate frequencies may include both
unknotted and knotted bridges.

IV. Monte Carlo Computer Simulations

Computer simulations are employed utilizing the
Cooperative Motion Algorithm49,50 in order to probe the
static and dynamic behavior of symmetric triblocks as
a function of molecular weight and compare the behav-
ior to that of the respective diblocks; the aim is to
investigate the true equilibrium features of the mor-
phology and the dynamics in these systems. A main
difference between the experimental systems and the
triblocks investigated by the simulation is the fact that
equal mobilities are considered in the simulation for the
two components forming the triblock. This means that,
in the simulated systems, the ends of the midblock
chains can fluctuate, restricted only by the thermody-
namic potential in the ordered state, whereas those in
the experimental specimens are more-or-less frozen at
the interfaces with the glassy polystyrene.

The details of the simulation method have been
presented before for the simulation of diblock copoly-
mers34 and are summarized in Appendix C. Four linear
symmetric triblocks and their respective diblocks are
considered; their characteristics are shown in Table 3.
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Static Properties. The thermodynamic properties of
the simulated systems are analyzed first in order to
determine the temperatures of phase transitions and
characterize the related structure and the structural
changes.

The microphase-separation temperature can be de-
termined34,51 from the temperature dependence of the
energy of the system or of the energy fluctuations (which
allow the determination of the specific heat). Figure 7a
shows the energy of interaction per monomer (eq C1)
as a function of reduced temperature (T/N) in a wide
temperature range for two triblocks BAB-20 and BAB-
30 upon heating; the resulting effective interaction

parameters (eq C3) are shown in Figure 7b. It was
proven that the heating rate was slow enough to give a
rate-independent shape of the energy curve. For diblock
copolymers,34 two characteristic temperatures (T1 and
T2 ) TODT) were identified, at which the thermodynamic
quantities changed in a specific way. Temperature T1
was assigned to the broad crossover region where a
broad step was observed in the specific heat from a very
low value at high temperatures to a higher value below
T1. In the same temperature range, the effective inter-
action parameter began to deviate considerably from the
øeff ∝ 1/T dependence at high temperatures toward a
plateau below T1; T1 was then assigned to indicate a
crossover between a high-temperature homogeneous
regime and a regime where concentration fluctuations
begin to increase considerably with decreasing temper-
ature. On the basis of the earlier findings and the
behavior of the temperature dependence of the concen-
tration fluctuations and the orientational correlations
(not shown; see Figure 3 of Pakula et al.34), this
temperature is also indicated in Figure 7 for the
triblocks, although it is not clearly evident. This may
be due to a different contribution of fluctuation effects
in the case of triblocks9 compared to diblocks34 because
the interactions of both end-blocks with the midblock
are coupled.

At lower temperatures, a second characteristic tem-
perature T2 was assigned34 to a stepwise change in the
energy and a weak corresponding peak in the specific
heat curve also supported by the calculations of the
concentration fluctuations and the local and global
orientational correlations; T2 signifies the disorder-to-
order transition temperature (ODT). In the triblock
systems shown in Figure 7, a significant stepwise
change in the energy is observed, and the ODT is
assigned at (T/N)ODT,BAB = 0.25-0.27. The respective
ODT for the diblocks both in the present study and in
the earlier one34 is (T/N)ODT,AB = 0.46; i.e., the transition
to the ordered state occurs at a lower temperature for
the triblock than for the respective diblock in agreement
with theory11 and experiment.9,10 At the same time, the
value of the product øeff N at the transition is found (øeff
N)ODT,BAB = 20 in very good agreement with theory.11

It is noted that no extra N dependence of (øeff N)ODT,BAB
was determined in the range of molecular weights
simulated. The curves shown in Figure 7 were calcu-
lated on heating; the respective curves on cooling show
a smaller step in the energy curve at the temperature
T2 signifying the ODT.

Figure 8a shows a projection of triblock BAB-60 in
the disordered state (T/N ) 1) on coordinates that are
not subjected to the periodic boundary conditions; the
homogeneous mixing of the blocks is evident. Figure 8b
depicts the projection of the triblock BAB-60 on the
lattice coordinates following cooling to T/N ) 0.05,
where a microphase-separated lamellar structure is
observed. In this case as well as in the cases of BAB-20
and BAB-30, the lattice size (30 × 30 × 30) was such
that the whole system simulated shows a monocrystal-
line region of the structure. For the BAB-90 triblock
simulated on a much larger lattice (60 × 60 × 60),
however, the cooling to the ordered state resulted in a
polycrystalline lamellar structure (not shown) where
two different lamellar orientations were observed with
a more “homogeneous-like” structure in the vicinity of
grain boundaries; this feature persisted even after long-
time equilibration in the ordered state.

Table 3. Characteristics of the Block Copolymers
Simulated

notation Ntotal NA
a NB1

a NB2
a

BAB-20 20 10 5 5
BAB-30 30 14 8 8
BAB-60 60 30 15 15
BAB-90 90 44 23 23
AB-10 10 5 5
AB-15 15 7 8
AB-30 30 15 15
AB-45 45 22 23

a For the triblocks, B1 and B2 are the two end-blocks and A is
the middle block. For the diblocks, A and B1 are the two blocks
(the A block of the diblock is equal to half of the A block of the
triblock).

Figure 7. Temperature dependencies of various thermody-
namic quantities determined for the Monte Carlo computer
simulations of symmetric triblocks BAB-20 (dotted lines) and
BAB-30 (solid lines) upon heating: (a) effective interaction
energy per monomer E(T) and (b) øeffN values, where øeff is
the effective interaction parameter. The characteristic tem-
peratures T1 and T2 are shown by arrows and are assigned
according to the discussion in the text.
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The information on the structure was necessary in
order to determine the bridge fraction of the midblock.
Following the cooling of the system to the microphase-
separated state and equilibration, a specifically devel-
oped algorithm was used to identify each individual A
or B microdomain of the lamellar structure (numbers
1-6 in Figure 8b for BAB-60). Then, each individual
chain was examined in order to determine whether its
two end-blocks B1 and B2 reside at the same micro-
domain or at opposite ones separated by an A domain.
In the former case, the midblock conformation is identi-
fied as a loop whereas in the latter as a bridge. Table 4
lists the bridge fraction φbridge determined for the three
triblocks BAB-20, -30, and -60 (the polydomain structure
of BAB-90 did not allow for the identification of each
domain with the algorithm mentioned above and, thus,
the determination of the bridge fraction). The φbridge

values in Table 4 are indeed equilibrium values, as
verified by extra equilibration of the systems in the
ordered state when the obtained φbridge values essentially
do not change. The estimated errors in the second
column of Table 4 denote these small changes, which
may be due to either an error introduced during the
loop/bridge identification or an exchange of chains
between the two conformations. It is also noted that the
simulation for the BAB-30 on a different lattice (30 ×
30 × 40) resulted in a value for φbridge (0.48), which is
essentially within the error of the value in Table 4. Note
that in the present simulations it was not computation-
ally possible to separate unknotted from knotted chain
configurations; thus, the φbridge values in Table 4 are the
total for unknotted and (possibly) knotted bridges.

The values for φbridge estimated from the computer
simulations can be compared to the equilibrium values
calculated by theory. Matsen and Shick6 used a mean-
field lattice formalism and found that the bridge fraction
changes from ∼0.44 for low øN, ∼20, to an almost
constant value of 0.37 at high øN, ∼300. Matsen16 used
a self-consistent-field theory as well as a numerical
simulation of the strong segregation theory equations
to obtain very similar values. An even more recent
estimation by Jones et al.7 gives values ranging from
0.65 at low øN, ∼20, to 0.55 for high øN, ∼104 (the
renormalized fractions q′ they suggest to use range from
0.48 to 0.38). Limiting expressions were also presented
in the limit of very high øN.15,14,7,17 The computer-
simulation estimates presented here fall in the same
regime of φbridge values, which, however, show a depen-
dence on N and not on the product øN (the calculations
for the different systems were performed at the same
T/N ) 0.05, i.e., at the same thermodynamic state).
Estimates at different T/N (e.g., at T/N ) 0.10) did not
show a significant effect on φbridge (the obtained values
were within the errors of Table 4) as long as the system
was well in the ordered state. Therefore, it appears that
the bridge fraction depends explicitly on N and not on
øN, at least in the present range of molecular weights
and øN’s.

Because the chains having loop or bridge conforma-
tion have been identified, one can examine their indi-
vidual conformational characteristics (and later their
dynamics) in the ordered state and compare them with
the respective diblocks. Table 4 shows the estimated
average magnitude of the vector R2 connecting the end-
point to the midpoint of the midblock (Figure 1) for the
chains forming loops, 〈R2L〉, and for those forming
bridges, 〈R2B〉, relative to the magnitude of the end-to-
end vector of the block of the respective diblock, 〈R〉. The
midblocks of the triblock chains appear to be more
extended than the tails of the diblocks, with this
difference apparently disappearing at higher N’s. More-
over, the chains having bridge conformation are some-
what more extended than the loops, in agreement with

Figure 8. (a) Projection of a snapshot of the real space
morphology of triblock BAB-60 in the disordered state at T/N
) 1 on coordinates not subjected to the periodic boundary
conditions. Different shadings represent the two types of
monomers A and B. (b) Projection of a snapshot of the real
space morphology of triblock BAB-60 on the lattice coordinates
in the ordered state at T/N ) 0.05. Different shadings
represent the two types of monomers A and B, whereas the
lines joining monomers belonging to the same chains are not
drawn for clarity. Different numbers represent the successive
lamellae determined with the algorithm discussed in the text.

Table 4. Bridge Fraction and Chain Extension in the
Simulated Systems

notation φbridge 〈R2L〉a 〈R2B〉b 〈R〉c 〈R2L〉/〈R〉 〈R2B〉/〈R〉

BAB-20 0.50 ( 0.005 9.4 10.4 9.0 1.05 1.16
BAB-30 0.49 ( 0.009 20.8 21.3 17.7 1.18 1.20
BAB-60 0.37 ( 0.011 39.2 39.4 39.6 0.99 0.99

a 〈R2L〉 ) 〈R1L〉 ) 〈RL〉 the magnitude of vectors R1 and R2 for
the loops (Figure 1). b The magnitude of vector R2 for the bridges
(Figure 1). c The magnitude of vector R for the respective diblock
(Figure 1).
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earlier experimental data.52

Dynamic Properties. The aim of the simulation of
the dynamics is to be able to discuss the findings in
relation to the experimental data presented in section
III in order to understand the contribution of loops and
bridges on the dielectric relaxation discussed above. For
this, the orientational dynamics of the vector ∆R ) R1
+ R2 is investigated individually for chains with loop
and bridge conformation of the midblock of the triblock
and compared with the respective correlation functions
for the end-to-end vector R of the active block of the
diblock.

The dielectric relaxation is related (see Appendix A)
to the correlation functions

and

for the triblock and the diblock, respectively, where nc
is the total number of chains, ‚ signifies the dot product,
and the average 〈‚‚‚〉 is taken over the various configu-
rations of the system. The total dielectric strengths are
given by

where,

and

Note that C〈∆R〉,all(∞) ) 0 and C〈R〉,all(∞) ) 0, because the
orientations of ∆R and R are completely uncorrelated
for infinite times.

Performing the averaging over all of the chains in the
system results in very poor statistics. Thus, the cor-
relation functions of the vectors ∆R and R are calcu-
lated by taking into account the near neighbors, essen-
tially accounting for the possible existence of correlations
on the chain motion only over the near neighbors; this
is also consistent with the way the experimental dielec-
tric strength is obtained (it practically originates from
the average polarization within a finite volume around
each chain). Therefore, the calculated quantities are the
following:

with 〈(∆R)2〉 ) C〈∆R〉neigh(0) and 〈(R)2〉 ) C〈R〉,neigh(0),
where z is the number of near neighbors of chain i. Test
runs showed that the findings discussed below are not
affected in any appreciable way when eqs 12 and 13 are
used instead of eqs 9-11; i.e., the assumption that the
cross-correlation survives only for neighboring chains
does not significantly modify the observed behavior.

Alternatively, the correlation functions can be calcu-
lated only over the self-terms, i.e., without taking into
account any cross-correlations as

This calculation is performed only for comparison.
When multiple relaxation processes are involved, the

respective ∆ε should be calculated as the differences
C(tstart) - C(tend), with tstart and tend signifying the range
of the respective relaxation; this leads to the following
expressions for the dielectric strengths of the chain
relaxation

Figure 9 shows the comparison between the normal-
ized C〈R〉,neigh(t)/C〈R〉,neigh(0) and C〈R〉(t)/C〈R〉(0) for the three
diblock copolymers AB-10 (a), -15 (b), and -30 (c). The
two types of correlation functions exhibit the same
relaxation times, whereas the reduced statistics result
in higher noise for the C〈R〉,neigh(t) correlation function.
The correlation functions do not decay to zero because
of the residual memory of R of the blocks tethered at
the lamellar interfaces (this memory relaxes slowly
through the interfacial relaxation process in the ordered
state;24,34 the relative amplitude of the latter is higher
in the C〈R〉,neigh(t) correlation function). It is important
to note that the dynamics of the fast process does not
depend on whether C〈R〉,neigh(t) or C〈R〉(t) is used. The
same is true (with larger uncertainty due to the even
poorer statistics) if the correlation function over all
chains is calculated. The above hold for the behavior of
the correlation functions for the triblock copolymers as
well.

Figure 10 shows the normalized correlation functions
C〈∆R〉,neigh(t)/C〈∆R〉,neigh(0) for the vector ∆R calculated
individually for loops and bridges for the triblocks BAB-
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(amplitude of the chain process of C〈R〉,all(t)) (15b)
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20 (a), -30 (b), and -60 (c) for which the bridge and loop
chains have been identified. It is evident that the
dynamics of the fast process is practically the same for
loops and bridges for BAB-30 and -60, whereas for BAB-
20, the bridge dynamics appear somewhat faster. Simi-

larly to the case for the diblocks, the correlation
functions do not decay to zero due to the slow interface-
related process discussed above; the amplitude of this
process for diblocks is known to depend on the coherence
of the ordered lamellae structure,24,34 which is not
possible to control. Thus, for comparison of the “strength”
of the relaxation of ∆R (triblocks) to that of R (diblocks)
as well as with the experimentally determined dielectric
strengths,53 one utilizes eq 15a,b, with the amplitudes
therein being evaluated using Figures 9 and 10 (the
amplitudes are evaluated for the fast mechanism related
to the orientational relaxation of ∆R or R). The results
are summarized in Table 5, where the values of 〈(∆R)2〉*

are shown individually for loops and bridges together
with the value of 〈(R)2〉*.

In Table 5, κ defined as

corresponds to the experimentally determined ratio
∆εn,triblock/∆εn,diblock, provided that the loop and bridge
dynamics cannot be separated.54 In eq 16, 〈(∆R)2〉L

* is
the value of 〈(∆R)2〉* for chains forming loops, and
〈(∆R)2〉B

* is that for chains forming bridges whereas the
φbridge values from Table 4 are used. The much larger
contribution of the chains forming loops to the intensity
relative to that of bridges is evident in Table 5 for the
low-molecular-weight triblocks (N ) 20 and 30). Actu-
ally, since the fraction of bridges was estimated (Table
4) to be about 50% for these, the total contribution of
loops to κ is about twice that of bridges for these low-
molecular-weight systems (Table 5). For N ) 60, the
difference in the two quantities 〈(∆R)2〉L

* and 〈(∆R)2〉B
*

becomes less; however, even in this case with the bridge
fraction φbridge = 37% (Table 4), the total contribution
of loops to κ is again twice that of the bridges (Table 5).
Moreover, for all N’s, the ratio κ is larger than unity
and around 2.5 is in close agreement with the experi-
mental observation for the annealed samples of ∆εn,tri-

block/∆εn,diblock = 2.
Figure 11 shows a comparison between the normal-

ized correlation functions C〈∆R〉,neigh(t)/C〈∆R〉,neigh(0) for the
loops of the triblocks and C〈R〉,neigh(t)/C〈R〉,neigh(0) for the
diblocks together with the respective relaxation spectra
F̃(ln τ), obtained by the CONTIN29,30 inversion of the
correlation functions. In all cases, the distributions of
relaxation times for the loops are much broader than
for those for the respective diblocks while the relaxation
times are not very different. Actually, the most probable
relaxation time (the peak of F̃(ln τ)) of the C〈R〉,neigh(t)
for the diblocks is somewhat faster than that for the
C〈∆R〉,neigh(t) for the loops of the triblocks, with this
difference being larger for the highest molecular weight
(a factor of ∼5). The broader distribution leads to the
expectation of a broader dielectric loss for the triblock,
in agreement with the experiment in the annealed
systems, whereas the dynamics does not appear faster,
in disagreement with the experiment.

Figure 9. Comparison between the normalized correlation
functions C〈R〉,neigh(t)/C〈R〉,neigh(0) (O, 0, ]) and C〈R〉(t)/C〈R〉(0) (b,
9, [) for the three diblock copolymers: (a) AB-10 (O, b), (b)
AB-15 (0, 9), and (c) AB-30 (], [) calculated according to eqs
12b and 14b. Time is expressed in Monte Carlo steps per
monomer (mcs).

Figure 10. Normalized correlation functions C〈∆R〉,neigh(t)/
C〈∆R〉,neigh(0) for the vector ∆R calculated individually for loops
(O, 0, ]) and bridges (b, b, [) according to eq 12a for the
triblock copolymers: (a) BAB-20 (O, b), (b) BAB-30 (0, 9), and
(c) BAB-60 (], [). Time is expressed in Monte Carlo steps per
monomer (mcs).

Table 5. Comparison of 〈(∆R)2〉*, 〈(R)2〉*, and K Values for
the Simulated Systems

notation 〈(∆R)2〉*L 〈(∆R)2〉*B 〈(R)2〉*
(1-φbridge)
〈(∆R)2〉*L

φbridge
〈(∆R)2〉*B κ

BAB-20 8.0 5.9 1.5 4.0 2.9 2.4 ( 0.14
BAB-30 14.7 8.1 2.0 7.6 3.9 2.9 ( 0.37
BAB-60 26.4 22.9 4.9 16.7 8.4 2.5 ( 0.34

κ )
0.5[(1 - φbridge)〈(∆R)2〉L

* + φbridge〈(∆R)2〉B
* ]

〈R2
2〉*

(16)
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Possible origins of disagreement may be the different
degree of entanglement between the real polyisoprene
midblock chains and the simulated systems55 and, even
more importantly, the fact that in the experiment the
ends of the midblock chains are practically frozen at the
interfacial regions with the glassy polystyrene lamellae
(the temperature range of the experiments is below the
polystyrene glass-transition temperature), whereas in
the simulations, both components possess the same
mobilities. This means that these simulations are
concerned with the investigation of the true (but hard
to realize) equilibrium features of the midblock loop and
bridge dynamics. A series of simulations with varying
friction coefficient ratios between A and B can be useful
for a closer correlation with the experimental data;
however, because of the computation time requirements
(it will increase proportionally to the ratio of friction
coefficients), this is left for a future work.

V. Concluding Remarks
Dielectric relaxation spectroscopy and Monte Carlo

computer simulations have been utilized to probe the
bridges-to-loops ratio in ordered symmetric triblock
copolymers. In an extension/completion of an earlier
work by Watanabe,19 the effects of the sample history
on the dielectric relaxation behavior of triblock copoly-
mers with symmetrically inverted dipoles along the
chain backbone of the middle block have been investi-
gated. For specimens with quenched chain configura-
tions when the number fraction of knotted loops or
bridges is small, the dielectric method is capable within
certain assumptions (either that of the loops dominating
the low-frequency response or that of the bridges having
a negligible amplitude) to identify the unknotted bridge

fraction utilizing the fact that the slow dynamics in the
triblock are essentially due to the unknotted loops; at
this moment, it seems that this method is the best and
only method for a simple determination of φbridge.
However, it is found that, with annealing, a process with
dynamics intermediate between the segmental mode
and the block relaxation of the respective diblock
develops having a much higher intensity. This is prob-
ably due to the annealing affecting the conformation of
the midblock chains and especially the fraction of
interdigitated (knotted) loops and bridges and rendering
almost impossible the estimation of the bridge fraction.

Monte Carlo computer simulations using the Coop-
erative Motion Algorithm were used to identify the
bridge fraction in the static mode as well as the
characteristics of the orientational motion of midblock
chains having either loop or bridge conformation and
compare their contributions to the total dielectric re-
sponse relative to that of the respective diblocks. The
equilibrium bridge fraction is estimated as 0.50-0.37,
in the same range with theoretical predictions; however,
it decreases with N at constant T/N ) 0.05, whereas
theory predicts that it is only a function of øN. It is found
that at true equilibrium the contribution of the intensity
of loops is almost twice that of bridges, with both,
however, having similar relaxation rates. The total
intensity is much larger than that for the respective
diblocks, in agreement with the experiment for the
annealed triblocks. The dynamics is found to be very
similar to that for the normal mode in the diblocks,
which does not agree with the observed behavior for the
annealed systems. This should be due to the different
dynamic state of the end-block domains between the
simulated (equal mobilities) and the actual experimen-
tal system (glassy polystyrene), which provides an extra
thermodynamic constraint for the chain motion of the
polyisoprene midblock.

At temperatures lower than the glass transition of the
polystyrene domains, where the block junction is es-
sentially frozen and the system is in the quenched
(partial equilibrium) state, the φbridge value determined
experimentally is not the true equilibrium value but
gives a real bridge fraction in the quenched systems.
The simulations suggest that at higher temperatures
(higher than T g

PS) the bridge fraction in the system
would be closer to the true equilibrium value but its
dielectric evaluation may become difficult because of the
reduction of the dynamic differences between the loop
and bridge conformations due to the enhanced junction
mobility.
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Appendix A: Framework of Dielectric
Spectroscopy Relevant to the Present Work

Dielectric relaxation spectroscopy was used to inves-
tigate the collective chain dynamics of the PI blocks of

Figure 11. Comparison between the normalized correlation
functions C〈R〉,neigh(t)/C〈R〉,neigh(0) for the diblocks (O, 0, ]) and
C〈∆R〉,neigh(t)/C〈∆R〉,neigh(0) for the loop conformation in triblocks
(b, 9, [) for (a) AB-10 (O) and BAB-20 (b), (b) AB-15 (0) and
BAB-30 (9), and (c) AB-30 (]) and BAB-60 ([), together with
the distributions of relaxation times F̃(ln τ) (solid line for the
triblocks and dotted line for the diblocks; right axis). Time is
expressed in Monte Carlo steps per monomer (mcs).
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the di- and triblocks in the ordered state. The complex
dielectric permittivity (section II) is given by the one-
sided Fourier transform of the time derivative of the
autocorrelation function of the z-component of the
polarization, C(t) ) 〈Pz(t)Pz(0)〉. The evaluation of this
C(t) for the present di- and triblock systems and its
relationship to the dielectric loss ε′′(ω) is summarized
below.

1. Expression of C(t) for PI. The PI chain possesses
segmental dipole components both parallel and perpen-
dicular to the chain backbone. For the PI block of the
diblock examined in this study, the parallel dipoles are
aligned in the same direction along the block backbone.
Thus, for this block (indexed with R), the sum of these
dipoles is proportional to its end-to-end vector RR (cf.
Figure 1). On the other hand, for the PI block of the
triblock, the parallel dipoles are once inverted at its
midpoint. For this case, the sum of these dipoles is
proportional to the vector ∆RR ) R1R + R2R, where R1R
and R2R are the two vectors connecting the end to the
midpoint of the PI block; see Figure 1. Therefore, the
polarization of the Rth copolymer chain at T < Tg

PS

(where the PS block motion is frozen) is given by pR(t)
) µRR(t) + ∑âµ′R,â(t) for the diblock and pR(t) ) µ∆RR(t)
+ ∑âµ′R,â(t) for the triblock. Here, µ is the magnitude of
the parallel dipole reduced to unit end-to-end distance,
and µ′R,â is the perpendicular dipole of a âth PI segment
of this chain.

In the di- and triblock copolymer systems, the fluc-
tuation of µ′R,â(t) due to the local (segmental) motion at
t > 0 can be assumed to be uncorrelated with RR(0) or
∆RR(0), i.e., the quantities specifying the global chain
configuration in the initial state (t ) 0).28,29 Similarly,
the fluctuation of RR(t) or ∆RR(t) due to the global chain
motion can be assumed to be uncorrelated with the
initial values µ′R,â(0). Under these assumptions, we can
utilize the above expression of pR to write ∆C(t) ) C(t)
- C(∞) in the form

with

Rz,R(t), ∆Rz,R(t), and [µ′R,â(t)]z are, respectively, the com-
ponents of RR(t), ∆RR(t), and µ′R,â(t) in the direction of E
(z-direction). The relaxation of ∆C⊥(t) is induced by the
fast segmental motion, whereas that of ∆C|(t) results
from the much slower global chain motion (normal mode
relaxation). Thus, ∆C(t) splits into fast and slow relax-
ation functions (∆C⊥ and ∆C|) that are experimentally
observed at low and high temperatures, respectively.

2. Interchain Correlation in C|(t). The ∆C|(t) for
the global mode includes (eqs A2 and A3) both autocor-
relation terms (with R′ ) R) and the cross-correlation
(interchain correlation) terms (with R′ * R). The net
contribution of the latter terms to ∆C|(t) changes with
the chain conformation. The di- and triblock copolymers

examined dielectrically have an (almost) identical lamel-
lar structure parallel to the electrodes. However, the
conformation of the PI blocks is different, as schemati-
cally shown in Figure 2. In the diblock, all PI blocks
attain the tail conformation, whereas, in contrast, the
PI blocks in the triblock lamella take various conforma-
tions, i.e., the unknotted (dangling) loop, the unknotted
bridge, and the loop/bridge mutually knotted in various
ways.

For the tails, the cross-correlation contribution to ∆C|

was discussed by Yao et al.21a They examined the
dielectric behavior of blends of PS-PI and PS-polyb-
utadiene (PB) diblocks of almost identical molecular
weights and composition (PS:diene = 50:50). These
copolymers were uniformly mixed to coform PS/diene
alternating lamellae. Because the PB block does not
possess a parallel dipole component, the slow dielectric
relaxation of this mixed lamella was exclusively at-
tributed to the global motion of the PI blocks. Their data
indicated that the dielectric relaxation intensity was
proportional to the PI block concentration cPI whereas
the dielectric mode distribution was insensitive to cPI.
The pairwise cross-correlation would have resulted in
a scaling of the intensity as cPI

2 as well as in changes of
the mode distribution with cPI because the correlation
between the dielectrically active PI chains is reduced
on dilution by the inert PB blocks, i.e., on decreasing
cPI. Thus, those data indicate that the cross-correlation
contributes negligibly to ∆C|(t) of the PS-PI diblock
copolymer lamella.

This lack of the cross-correlation contribution indi-
cates that a cancellation occurs for the cross-correlation
terms in eq A2 for the PI tails in the diblock lamella.35

Equal numbers of PI tails are tethered on the top and
bottom surfaces of the lamella shown in Figure 2a.
Thus, for a given (Rth) PI tail having RR(t), the other
(R′th) tails have their end-to-end vectors RR′(0) and -RR′-
(0) with the same probability and the sum ∑R∑R′*R[〈Rz,R-
(t)Rz,R′(0)〉 - 〈Rz,R(∞)Rz,R′(0)〉] vanishes. In other words,
the cross-correlation does exist for chain motion but has
no total dielectric activity. Note that a similar argument
holds for homo-PI chains. Thus, for the diblock lamella
parallel to the electrode, eq A2 is simply written in
terms of the autocorrelation ∆ct

|(t) for a representative
tail35 (Figure 2a)

with

where 2ν is the number density of the PI tails in the
system and H(t) is the free end height of this tail at time
t measured from the bottom surface of the lamella
shown in Figure 2a (H ) Rz).

For the unknotted loops and bridges in the triblock
lamella (Figure 2b,c), a similar cancellation occurs, and
the sum ∑R∑R′*R[〈(∆Rz,R(t)∆Rz,R′(0)〉 - 〈∆Rz,R(∞)∆Rz,R′(0)〉]
in eq A3 vanishes. Thus, for these unknotted chains,
∆C|(t) is written as

where νê is the number density of the unknotted loops

∆C(t) ) ∆C|(t) + ∆C⊥(t) (A1)

∆C|(t) ) µ2∑R∑R′[〈Rz,R(t)Rz,R′(0)〉 - 〈Rz,R(∞)Rz,R′(0)〉]
[diblock] (A2)

∆C|(t) ) µ2∑R∑R′[〈∆Rz,R(t)∆Rz,R′(0)〉 -
〈∆Rz,R(∞)∆Rz,R′(0)〉] [triblock] (A3)

∆C⊥(t) ) ∑R∑R′∑â∑â′[〈[µ′R,â(t)]z[µ′R′,â′(0)]z〉 -
〈[µ′R,â(∞)]z[µ′R′,â′(0)]z〉] (A4)

∆CPS-PI
| (t) ) 2ν∆ct

|(t) (A5)

∆ct
|(t) ) µ2[〈H(t)H(0)〉 - 〈H(∞)H(0)〉] for a tail (A6)

∆Cê
|(t) ) νê∆cê

|(t)
ê ) u.l. (unknotted loops) and u.b.

(unknotted bridge) (A7)
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or bridges in the system and ∆cê
|(t) is the autocorrela-

tion for the representative chains shown in Figure 2b,c35

Here, H(t) represents the height of the loop midpoint
(∆Rz ) 2H for the loop), and D(t) denotes a displacement
of the bridge midpoint from the lamellar midplane (D
) H - L/2; ∆Rz ) 2D for the bridge).

The situation is different for knotted chains.35 The
above cancellation would occur for chains belonging to
different knots but not for chains included in the same
knot. For mutually knotted g chains (loops/bridges), the
polarization in the z-direction is given by

where AR(t) ) ∆Rz/2 represents a midpoint configuration
of the Rth chain in the knot and A(t) is an average
taken for all g chains in the knot; AR(t) is the midpoint
height HR(t) or the residual height L - HR(t) if the Rth
chain forms a loop tethered on the bottom or top surface
of the lamella, respectively, whereas AR(t) is the mid-
point displacement DR(t) if the Rth chain forms a bridge
(Figure 2). From this pk(t) defined for the g chains (n
bridges, m loops on the bottom lamellar surface, and g
- n - m loops on the top surface), an average contribu-
tion to ∆C|(t) from a chain in the knot is given by

For an ensemble of knots each containing g chains,
∆Ck

| is simply written, in terms of this ∆ck
| , as

where νk(g,n,m) is the number density of the chains
included in the above types of knots.

It should be noted, here, that ∆ck
| of a knotted chain

(eq A11) is written in a form similar to ∆c| of a
unknotted chain (eqs A8 and A9), except that ∆ck

| has
an extra front factor g not appearing in eqs A8 and A9.
This factor reflects an enhancement of polarization due
to cross-correlation of the g chains in a knot.35 From
this factor, one might consider that the dielectric
intensity of a chain in a knot (∝∆ck

| (0)) is infinitely
enhanced for g f ∞. However, the fluctuation of the
midpoint, [〈A(t) A(0)〉 - 〈A(∞) A(0)〉] in eq A11, is sup-
pressed with increasing g, and the intensity saturates
for g f ∞, as suggested by Watanabe et al.;35 more
details are explained in Appendix B.

3. E′′ for Diblock and Triblock Lamellae. The
dielectric relaxation function of the triblock copolymer
lamella, which includes the PI blocks having the various
conformations, is therefore given by

The first and second terms represent the contributions
from the unknotted loops and bridges, respectively, and
the last term indicates the contribution from all knotted
loops/bridges. Here, the total number density of the
triblock chains is half of the density of the diblock
chains; i.e., νu.l. + νu.b. + νk

T ) ν, with νk
T ) ∑gg2∑ng0∑mg0

νk(g,n,m) (total number density of the knotted chains).
Thus, if one knows or guesses some details of the
relaxation functions of the diblock and triblock chains,
∆cê

|(t) with ê ) t (eq A6), u.l. (eq A8), u.b. (eq A9), and
k (eq A11), the comparison of the dielectric data of the
triblock and diblock lamellae enables one to estimate
the unknotted bridge fraction, φu bridge ) νu.b./ν. The
details of those relaxation functions in turn reflect
characteristic features of the block chain motion.

The block chains are spatially confined in a lamella
and are thermodynamically required to preserve their
bulk segment density. These two factors, the spatial
confinement and the density-preserving requirement,
influence the chain motion and, thus, determine the
relaxation functions. When one examines these effects,
it is informative to first study the dielectric behavior
under the absence of these factors; as summarized in
Appendix B, a model calculation35 indicates that the
dielectric behavior is exactly the same for tails, unknot-
ted loops, and unknotted bridges, with the latter two
having the dipole inversion at the midpoint. The be-
havior of the knotted loops/bridges cannot be rigorously
calculated because a topological constraint due to the
knot is not simply represented in terms of the chain
conformation. However, in an extreme case of the
strongest constraint where the knot behaves as a cross-
linking node, the knotted chains can be modeled as a
bundle of tails that are connected at their ends. A
calculation for this model35 indicates that the behavior
of the bundle is the same as that of the unknotted
chains. In the other extreme of the weakest constraint,
i.e., when the knot has no effect, the behavior of the
unknotted loop/bridge is recovered. Thus, the behavior
in these two extremes is identical. This result suggests
that the diblock and triblock lamellae exhibit essentially
the same dielectric response (and thus the tail, loop, and
bridge are not dielectrically distinguished) if the block
chains are not subjected to the spatial confinement and
the density-preserving requirement. For chains that are
subjected only to the spatial confinement in a lamella,
the model calculation indicates35 that the dielectric
behavior is the same for the unknotted loop and bridge
and only a minor difference in the dielectric intensity
is noted for the tail. No difference is found for knotted
loops and bridges modeled as the bundle, and the
dielectric intensity is moderately larger for these knot-
ted chains than for the unknotted chains. More impor-
tantly, it was pointed out that the spatial confinement
itself moderately accelerates the block chain relaxation,
and this effect is just the opposite of the observed one.
From these results, it was demonstrated that the block
chain dynamics is much more significantly affected by
the thermodynamic requirement of preserving constant
density.35

In previous studies,19,26 Watanabe and co-workers
discussed the similarity/differences in the dynamics of
the tail and unknotted loops/bridges under the influence

∆CPS-PI-PS
| (t) ) νu.l.∆cu.l.

| (t) + νu.b.∆cu.b.
| (t) +

∑gg2∑ng0∑mg0 νk(g,n,m)∆ck
| (t;g,n,m) (A13)

∆cu.l.
| (t) ) 4µ2[〈H(t)H(0)〉 - 〈H(∞)H(0)〉]

for an unknotted loop (A8)

∆cu.b.
| (t) ) 4µ2[〈D(t)D(0)〉 - 〈D(∞)D(0)〉]

for an unknotted bridge (A9)

pk(t) ) 2gA(t) A(t) )
1

g
∑
R)1

g

AR(t) (A10)

∆c|
k(t;g,n,m) ) 1

g
[〈pk(t)pk(0)〉 - 〈pk(∞)pk(0)〉] )

4gµ2[〈A(t) A(0)〉 - 〈A(∞) A(0)〉] (A11)

∆Ck
| (t;g,n,m) ) νk(g,n,m)∆ck

| (t;g,n,m) (A12)
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of this thermodynamic effect. The block chains move in
a highly cooperative way so that their motion does not
violate the density-preserving requirement, and this
cooperativity forces the chains to take even entropically
unfavorable distorted configurations before they relax.
This entropic barrier results in the retarded and broad-
ened dielectric relaxation of the block chains. A confor-
mational and motional similarity between the tail and
the unknotted loop and a difference between the tail and
the bridge was considered in order to argue that the
dielectric relaxation is similar for the tail and loop
(except that the loop is composed of two tails connected
at the ends and its dielectric intensity is twice of the
intensity of the tail), whereas the relaxation would be
faster and the intensity smaller for the bridge.19,26 This
argument leads to a relationship ∆cu.l.

| (t) = 2∆ct
|(t) .

∆cu.b.
| (t) at long times. If the knotted chains do not

significantly contribute to ∆CPS-PI-PS
| of the triblock

lamella, i.e., if the population νk
T of those chains is

considerably smaller than the populations νu.l. and νu.b.
of the unknotted loops and bridges, the above relation-
ship is rewritten as (cf. eqs. A5 and A13)

where the ratio (νu.l./ν) is identical to the unknotted loop
fraction φu.loop (for the case νk

T , ν considered here). For
the measured quantity ε′′, eq A14 can be cast in the
form19,26

Thus, if the above argument is valid, the ω dependence
(dielectric mode distribution) is the same for ε′′PS-PI-PS
(ω) and ε′′PS-PI(ω) of the triblock and diblock lamellae at
low ω, and the magnitude is smaller for the former by
the factor φu.loop. Furthermore, if the second part of the
argument is valid, and the dielectric intensity ∆ε is
significantly smaller for the bridge than for the loop
(both in the unknotted state), eq A15 holds in a
considerably wide range of ω, meaning that φu.loop can
be evaluated also from a relationship for ∆ε,

The dynamic behavior of knotted chains is not (ex-
plicitly) included in the argument of Watanabe.19,26

Thus, if νk
T is comparable to (or larger than) νu.l. and

νu.b. and the knotted chains significantly contribute to
∆CPS-PI-PS

| of the triblock lamella, eqs A15 and A16
may fail. Specifically, it is expected that ∆εPS-PI-PS is
considerably larger than ∆εPS-PI if the dielectric re-
sponse of this lamella is dominated by the knotted
chains that mutually enhance their polarization (cf.
Appendix B). The ω dependence of ε′′PS-PI-PS(ω) and
ε′′PS-PI(ω) is examined (section III) to test the validity of
the argument (for the case of νk

T , ν) and φu.loop is
estimated from eqs A15 and A16 when this validity is
confirmed.

Appendix B. Dielectric Behavior of Tail, Loop,
Bridge, and Knotted Chains in the Absence of
the Density-Preserving Requirement

For the PI block chains having various conformations,
the relaxation function ∆C|(t) reflects fluctuations of the

block end points (for the tail) and midpoints (for loop/
bridge) that are shown in Figure 2 with the filled circles.
Recently, Watanabe et al.35 calculated ∆C|(t) of those
chains that are placed in a lamella but not subjected to
the density-preserving requirement. The ∆C|(t) was
examined in two cases: in the first case, the lamella
has freely permeable walls (i.e., the chains are tethered
at certain points in free space), whereas in the second
case, the lamellar walls are impermeable for the chains,
and thus, the effect of spatial confinement emerges. For
both cases, the lowest-order motional mode (having the
largest wavelength) was considered (if necessary, one
can incorporate higher-order motional modes in the
calculation, but the analysis for the lowest-order mode
is sufficient for demonstration of the effect of spatial
confinement). The results obtained35 are summarized
below.

1. Behavior in Free Space. For the tail chain
tethered on a permeable lamellar wall at z ) 0 (Figure
2a), the distribution of the free end position H is
described by

Here, R0 is the unperturbed end-to-end distance of the
tail (R0 ) N1/2b, with N as the number of segments in
the tail and b as the segment step length). For the
unknotted loop or bridge, i.e., the head-to-head dimer
of the tail (Figure 2b,c), the distribution function for the
midpoint location is written in terms of this Wt,

Here, L is the lamellar thickness (cf. Figure 2), and Cu.l.
and Cu.b. are respective normalization constants. The
elastic force acting on the end point/midpoint is calcu-
lated as

The balance of this F, a frictional force (-ú dH/dt for
tail and -2ú dH/dt for loop/bridge, with ú ) Nú0 the
friction coefficient of the tail and ú0 that of a segment),
and the Brownian force FB results in the equation of
motion.

For the knotted chains (Figure 2d-f), a topological
constraint due to the knot would affect the chain motion.
This effect is not simply represented in terms of the
chain configuration, and the equation of motion cannot
be rigorously formulated. However, in the extreme case
where the knot gives the strongest constraint and works
as a cross-linking node, the knotted chains can be
modeled as a bundle of tails connected at their ends.
For the simplest bundle that contain two g tails, each
composed of the same number (N) of segments, the
distribution function for the node position H is again
written in terms of Wt (eq B1)

where q is the number of tails tethered on the bottom
surface of the lamella (e.g., q ) 2, 3, and 2 for parts d,

∆CPS-PI-PS
| (t) = 2νu.l.∆ct

|(t) ) (νu.l./ν)∆CPS-PI
| (t)

at long t (A14)

ε′′PS-PI-PS(ω) = φu.loopε′′PS-PI(ω) at low ω (A15)

∆εPS-PI-PS(ω) = φu.loop∆εPS-PI(ω) (A16)

Wt(H) ) (2πR0
2

3 )-1/2

exp[-3H2

2R0
2] (-∞ < H < ∞) (B1)

Wu.l.(H) ) Cu.l.[Wt(H)]2 (unknotted loop) (B2)

Wu.b.(H) ) Cu.b.Wt(H)Wt(L - H) (unknotted bridge)
(B3)

F ) ∂

∂H
[kBT ln W] (B4)

Wk(H) ) Ck[Wt(H)]q[Wt(L - H)]2g-q (B5)
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e, and f of Figure 2, all having g ) 2) and Ck is a
normalization constant. A balance of the elastic force
calculated from this Wk (eq B4), a frictional force -2gú
dH/dt, and FB gives the equation of motion for the node.

The above equations of motion were solved35 to obtain
H(t) for the respective cases. Utilizing this H(t) or D(t)
) H(t) - L/2 in eqs A5-A11, ∆C|(t) was obtained for
systems containing 2ν tails per unit volume, or ν
unknotted loops/bridges, or ν/g bundles each containing
g chains (a model for the ν knotted loops/bridges). The
results are the same for all systems including the
system of the bundles having any g and q values,35

The coincidence of ∆C|(t) for those chains can be also
found when the higher-order motional modes are incor-
porated in the Rouse calculation.26 The bundle is the
model for the knotted chains subjected to the strongest
constraint due to the knot. For the case of the weakest
constraint (no effect of knot), the same ∆C|(t) is ob-
tained. Thus, the dielectric behavior should not be
affected significantly by the knots and eq B6 should give
∆C|(t) for any system of chains having various confor-
mations (in free space).

The above results are informative in the following
ways: (i) The coincidence of ∆C|(t) for all systems means
that the loops and bridges cannot be dielectrically
distinguished if there is no spatial confinement and no
density-preserving requirement. (ii) For the bundle, the
enhancement of the cross-correlation of the polarization
of the chains in the same knot, reflected in the factor g
in eq A11, is exactly canceled by a suppression of the
fluctuation of the node (as noted from eq B5, the node
position distribution becomes narrower, and thus, the
node is more strongly bound at its average position for
larger g35).

2. Behavior in the Lamellae. For the tail that is
tethered on the bottom surface of the lamella and just
spatially confined in this lamella (i.e., not required to
preserve the uniform segment density), the distribution
of the free end position H is described by57

where L is the lamellar thickness and Ct a normaliza-
tion constant. The H dependence of Wt depends on the
ratio R0/L. For example, for R0/L , 1, Wt is reduced to
the distribution function in a half space58 (H g 0), Wt ∝
H exp[-3H2/(2R0

2)]. For the actual PS-PI and PS-PI-
PS lamellae examined in this study, L ()9.5 nm) is close
to R0 ()8.7 nm).19 The Wt for the case of L ) R0 is
satisfactorily approximated by a simple parabolic dis-
tribution function35

Considering these points, this Wp was used35 to calcu-
lated ∆C|(t) for the systems of tails, unknotted loops/
bridges, and bundles (the model for knotted loops/
bridges). The calculation procedure was the same as the
procedure giving eq B6, except that Wp was used instead

of Wt given in eq B1. For all of these chains, the results
(for L ) R0) are summarized as35

where Ij is a reduced intensity of the jth relaxation mode
and τl is the longest relaxation time. Table 6 sum-
marizes the initial values ∆C|(0) ) νµ2L2∑j)0

∞ Ij ∝ ∆ε
and a measure for a degree of polydispersity in the
relaxation modes, Q ) νµ2L2I1/∆C|(0). Note that the ∆C|-
(0) values were rigorously calculated from Wp but the
Q values were obtained from an approximate perturba-
tion calculation;35 the accuracy of the Q values was
estimated to be better than 6%. For comparison, the ∆C|-
(0) and Q values for the chains in the free space (eq B6)
are also shown in Table 6.

By comparing eqs B9 and B6, it is noted that the
relaxation of the chains is moderately faster in the
lamellae than in the free space, τl ) (3/8)τf. It is also
noted that the relaxation behavior in the lamellae is
identical for the loops and bridges (in either unknotted
or knotted states), meaning that these two conforma-
tions cannot be dielectrically distinguished. These re-
sults, obtained for chains that are not subjected to the
density-preserving requirement, are qualitatively differ-
ent from the experimental observation. This, in turn,
means that the dielectric behavior of the actual PI
blocks is dominantly affected by this requirement, and
the spatial confinement itself gives only a minor effect.35

However, it is still informative to examine this effect
of the spatial confinement on the dielectric behavior of
the knotted chains. The relaxation time τl remains the
same (eq B9), and the relaxation mode distribution
becomes only slightly narrower with increasing number
of the chains in the knot, g. However, nonnegligible
changes are observed for the dielectric intensity ∆ε ∝
∆C|(0); ∆ε of the bundle (knotted loops/bridges) first
increases moderately and then saturates with increas-
ing g f ∞. The increase indicates that the enhancement
of the polarization of the knotted chains is more
significant than the suppression of their motion when
the number of the chains (g) included in a knot is not
large, and the saturation reflects a cancellation of these
effects for large g. In the absence of the spatial confine-
ment, this cancellation takes place to give g-independent
∆ε for any g value (eq B6). Thus, the effect of the knot
is enhanced if the chains are spatially confined.

A qualitatively similar enhancement of the knot effect
would occur when the chains are thermodynamically

Table 6. Dielectric Parameters of Model Chains35

ν-1µ-2R0
-2∆C|(0)a Qb

In Free Space
any chain 2/3 1

In Lamella with L ) R0
tail 1/10 0.863
loop/bridge 1/7 0.881
bundle (g ) 2) 2/11 0.907
bundle (g ) 4) 4/19 0.936
bundle (g ) 8) 8/35 0.961
bundle (g ) ∞) 1/4 1

a ∆ε ∝ ∆C|(0). b Q ) νµ2L2I1/∆C|(0).

∆C|(t) ) νµ2L2∑
j)0

∞

Ij exp[-(2j + 1)t/τl]

τl )
úL2

8kBT
∝ N2 (B9)

∆C|(t) ) 2
3

νµ2R0
2 exp[-t/τf] τf )

úR0
2

3kBT
∝ N2 (B6)

Wt(H) ) Ct ∑
γ)-∞

∞

(H - 2γL) exp[-
3(H - 2γL)2

2R0
2 ]

(0 e H e L) (B7)

Wp(H) ) 6
L3

H(L - H) (0 e H e L) (B8)
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required to preserve uniform segment density. In other
words, the relaxation intensity may increase when the
PI blocks in the triblock lamellae form knots.35 This
increase does not occur for the diblock lamellae in which
the tail-type PI blocks cannot form knots. The increase
of the dielectric intensity on annealing, observed only
for the triblock lamella (Figure 6), may be related to
the formation of knots by the PI blocks with annealing
the specimen prepared by solvent casting. The chain
conformation may have been quenched at some point
during the solvent evaporation with the knot content
being smaller than that at real equilibrium; this content
seems to increase with annealing to the equilibrium
value, thus inducing an increase of ∆ε.

At the same time, it should be noted that bridges and
loops are conceptually not very different when they form
knots; no significant difference is expected for contribu-
tions of the knotted loops and knotted bridges to static
and dynamic properties (e.g., equilibrium swelling and
dynamic moduli). In other words, the loops and bridges
are to be distinguished only in the unknotted state, and
the quenching of the chain conformation allows us to
dielectrically distinguish the loop and bridge in this
state.

Appendix C. Simulation Method

The CMA allows the simulation of dense polymer
melts on a lattice.49,50 The lattice is completely occupied
by monomers, and the monomers of each chain are
connected by (N - 1) bonds of constant length. The
chains satisfy the excluded volume condition. Two types
of monomers, A and B, characterized by direct interac-
tion parameters εIJ are considered in the case of
copolymers. The energy of mixing is given only by the
interactions of monomers of different type; therefore, it
is assumed that εAA ) εBB ) 0 and εAB ) 1. The effective
interaction energy per monomer E, calculated over the
z nearest neighbors,

where indices I and J can both be A or B, will depend
on the local structure.

To generate equilibrium states, a dense system of
chains is subjected to motion at a given temperature.
The moves are strictly cooperative: as in a dense system
(F ) 1), a segment of one chain can only move if other
segments of different chains move simultaneously.
Moving a chain element alters the local energy because
the monomers are in close contact with new neighbors.
An attempt to move a single monomer is assumed to
define one Monte Carlo step, and the probability of
motion is related to the interaction energy of the
monomer in the attempted position, meaning that the
repulsive interaction energy εAB creates a barrier for the
formation of A-B contacts. The Metropolis59 method is
not used because the dynamics of the system is also of
interest. At a given temperature, T, the Boltzmann
factor p ) exp(-Efinal/kBT) is compared with a random
number r (0 < r < 1). If p > r, the move is performed,
and the motion of a new monomer is attempted. Because
εAB > 0, at low temperatures, the different types of
monomeric units tend to separate from each other in
order to reduce the number of A-B contacts and,
consequently, to reduce the total energy.

The simulations are performed on a face centered
cubic (fcc) lattice with bond length a ) x2. The pos-
sible bond angles are R ) 60°, 90°, 120°, and 180° with
degeneracy dR ) 4, 2, 4, and 1, respectively. The
coordination number of the lattice is z ) 12, i.e., every
monomer has 12 nearest neighbors. The lattice dimen-
sions are 30 × 30 × 30 sites except for the larger
systems (BAB-90 and AB-45, Table 3), where a lattice
of 60 × 60 × 60 sites was used. In both cases, periodic
boundary conditions have been employed in order to
reduce boundary effects.

The system is initially equilibrated in the athermal
limit, i.e., at εIJ/(kBT) ) 0, where no interactions between
monomers (except of the excluded volume constraints)
are present, and subsequently cooled to the temperature
T/N ) 1.0, by a temperature jump, and equilibrated
again. Starting from such a configuration, the system
is cooled slowly by small temperature steps. At each
temperature, the system is equilibrated and character-
ized by its energy, and a number of quantities describing
its static properties are calculated. The system cooled
to a low temperature is also observed during heating
in the same way. Quantities characterizing the system
are calculated only between cooperative rearrangement
steps.

Besides the energy of interaction per monomer, which
is calculated by eq C1, one can calculate the specific heat
via the fluctuation dissipation theorem CV ) (〈E2〉 -
〈E〉2)/(kBT2), where the brackets denote averages over
the total energy of the system computed during the
simulation. The thermodynamic state of the system can
also be characterized by the effective interaction pa-
rameter

where φA and φB are the volume fractions of monomers
of type A and B in the system, respectively. kB ) 1 is
assumed.
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(47) Frölich, H. Trans. Faraday Soc. 1948, 44, 238. Frölich, H.
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